
Inconsistent	Databases

Advanced	Topics	in	Foundations	of	Databases,	University	of	Edinburgh,	2019/20

Querying	Relational	Databases

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

Querying	Relational	Databases

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

{U2}

Q(z)		:- Airport(x,London),	Airport(y,Glasgow),	Flight(x,y,z)

Semantic	Information	About	the	Data

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

inconsistency!!!

The	code	uniquely	determines	the	airport

Main	Source	of	Inconsistency

data	is	coming	from	several	conflicting	sources	

D2

D1

Dn

D

⋯

sources

global
database

user
query

Querying	Relational	Databases

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

Q(z)		:- Airport(x,London),	Airport(y,Glasgow),	Flight(x,y,z)

{U2} ?

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Integrity	Constraints

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

inconsistency!!!

Key(Airport)	= {1}					≡ ∀x∀y	(Airport(x,y)	∧ Airport(x,z)	→ y	=	z)

Primary	Keys

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

inconsistency!!!

Key(Airport)	= {1}					≡ ∀x∀y	(Airport(x,y)	∧ Airport(x,z)	→ y	=	z)

at	most	one	key	per	relation

Primary	Keys
at	most	one	key	per	relation

• Consider	a	database	D,	and	a	primary	key	σ : Key(R)	=	{i1,…,in}

• We	say	that	D satisfies σ if,	for	every	two	atoms	R(a1,…, am) and	R(b1,…,bm)	in D

• such	that	ai1,…,ain =	bi1,…,bin,	it	holds	that	a1,…,	am =	b1,…,bm

• D satisfies	a	set	of	primary	keys Σ,	denoted	D⊨ Σ,	if	D satisfies	every	key	in Σ

• In	this	case	we	say	that	D is	consistentw.r.t.	Σ;	otherwise,	D is	inconsistentw.r.t. Σ

Consistent	Query	Answering	(CQA)

find	meaningful	answers	to	queries	

when	databases	are	inconsistent

Key	Elements	of	CQA

Repairs - consistent	databases	whose	difference	with	D is	“minimal”

D

D1 D2 Dn⋯

inconsistent	w.r.t.	primary	keys	Σ

repairs	of	D w.r.t.	Σ

Key	Elements	of	CQA

Repairs - consistent	databases	whose	difference	with	D is	“minimal”

Consistent	answers - answers	that	are	true	in	all	repairs

D

D1 D2 Dn⋯

inconsistent	w.r.t.	primary	keys	Σ

repairs	of	D w.r.t.	Σ

Answer(Q,D,Σ) =		Q(D1) ∩ ⋯ ∩ Q(Dn)

Q

Key	Elements	of	CQA

Consider	a	database	D,	and	a	set	Σ	of	primary	keys

A	repair of	D w.r.t. Σ	is	a	database	D’⊆ D such	that	the	following	conditions	hold:

1. D’ ⊨ Σ

2. There	is	no	D’’ ⊆ D	such	that	D’’ ⊨ Σ	and	D’⊂ D’’

Answer(Q,D,Σ) =		 ⋂ Q(R)
R	∈ repairs(D,Σ)

the	set	of	repairs	of	D w.r.t. Σ

Repairs

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Airport code city

VIE Vienna

LHR London

LGW London

GLA Glasgow

EDI Edinburgh

Airport code city

VIE Vienna

LHR London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Repair	1

Repair	2

Consistent	Answers

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

Consistent	Answers

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Repair	1:	{U2}

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Consistent	Answers

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Repair	1:	{U2}

Repair	2:	{	}

Answer	is	empty

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

(≡L	means	logspace-equivalent)

Theorem: CQA(L)	≡L BCQA(L),	where	L ∈ {RA,	DRC,	TRC,	CQ}

BCQA(L)

Input:	a	database	D,	a	set	of	primary	keys	Σ, a	Boolean	query	Q ∈ L

Question: is	Answer(Q,D,Σ)	non-empty?	

CQA(L)

Input:	a	database	D,	a	set	of	primary	keys	Σ,	a	query	Q/k ∈ L,	a	tuple	of	constants	t	∈ adom(D)k

Question: t∈ Answer(Q,D,Σ)?	

Consistent	Query	Answering

Data	Complexity	of	BCQA
input	D,	fixed	Σ	and	Q

BCQA[Σ,Q](L)

Input:	a	database	D

Question: is	Answer(Q,D,Σ)	non-empty?

Theorem: For	L ∈ {RA,	DRC,	TRC,	CQ},	BCQA[Σ,Q](L)	 is	coNP-complete	for	a	fixed	

set	of	primary	keys	Σ,	and	a	query	Q ∈ L.

Data	Complexity	of	BCQA

Proof:

• Guess a repair R ∈ repairs(D,Σ), and check whether Q(R) is empty

• Reduction from 3-Colorability to the complement of BCQA

3COL

Input:	an	undirected	graph	G =	(V,E)

Question: is	there	a	function	c	:	V	→ {R,G,B}	such	that	(v,u)	∈ E	⇒ c(v)	≠ c(u)?

3-Colorability

coNP-hardness

Given	an	undirected	graph	G =	(V,E)

construct	a	database	D	such	that,	for	some	fixed	Σ and	Q,	it	holds	that

G is	3-colorable	iff Answer(Q,D,Σ)	is	empty

D =	{Edge(u,v) :	(u,v)	∈ E}	∪

{Color(v,r),	Color(v,g),	Color(v,b) :	v	∈ V}	∪

{Bad(r,r),	Bad(g,g),	Bad(b,b)}

Σ = {Key(Color)	=	{1}}

Q	:- Edge(x,y),	Color(x,z),	Color(y,w),	Bad(z,w)

Lemma: G is	3-colorable		iff there	is	R	∈ repairs(D,Σ)	such	that	Q(R) is	empty

Theorem: For	L ∈ {RA,	DRC,	TRC,	CQ},	BCQA[Σ,Q](L)	 is	coNP-complete	for	a	fixed	

set	of	primary	keys	Σ,	and	a	query	Q ∈ L.

Data	Complexity	of	BCQA

Proof:

• Guess a repair R ∈ repairs(D,Σ), and check whether Q(R) is empty

• Reduction from 3-Colorability to the complement of BCQA

Tackle	High	Data	Complexity

Two	main	research	directions:	

1. Isolate	classes	of	queries	(in	fact,	classes	of	CQs)	for	which	the	problem	can	

be	solved	efficiently	in	data	complexity

2. Provide	data-efficient	approximations

Consistent	Answers

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Repair	1:	{U2}

Repair	2:	{	}

Airport code city

VIE Vienna

LHR London

LGW London

LGW Lilongwe

GLA Glasgow

EDI Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

EDI VIE OS

Answer	=	{	(U2,50%)	}

Relative	Frequency	of	a	Boolean	Query

RF(Q,D,Σ)				=	
|	{R		: R	∈ repairs(D,Σ)	such	that	Q(R) is	non-empty}	|

|	repairs(D,Σ) |

Consistent	Query	Answering	Revisited

RF-BCQA(L)

Input:	a	database	D,	a	set	of	primary	keys	Σ, a	Boolean	query	Q ∈ L

Output: RF(Q,D,Σ)

we	can	naturally	talk	about	the	data	complexity	the	problem

RF-BCQA[Σ,Q](L)	 	- input	D,	fixed	Σ	and	Q

Theorem: For	L ∈ {RA,	DRC,	TRC,	CQ},	BCQA[Σ,Q](L)	 is	FP#P-complete	for	a	fixed	

set	of	primary	keys	Σ,	and	a	query	Q ∈ L.

Data	Complexity	of	BCQA

• This	essentially	means	that	computing	the	relative	frequency	of	a	Boolean	

query	is	a	hard	problem,	even	for	CQs

• The	goal	is	to	efficiently	approximate the	relative	frequency

Efficient	Approximations

A	fully	polynomial-time	randomized	approximation	scheme (FPRAS)	for	RF-BCQA[Σ,Q](CQ)

is	a	randomized	algorithm	Approximation	that	accepts	as	input

a	database	D,	and	numbers	ε	>	0	and	0	<	δ	<	1,	

runs	in	polynomial	time	in	the	size	of	D,	1/ε	and	log(1/δ),	and

produces	a	random	variable	Approximation(D,ε,δ)	such	that

Pr(|Approximation(D,ε,δ)	- RF(Q,D,Σ)|		≤		ε .	RF(Q,D,Σ)) ≥ 1	- δ

fix	a	set	of	primary	keys	Σ,	and	a	Boolean	CQ	Q

Sampling
fix	a	set	of	primary	keys	Σ,	and	a	Boolean	CQ	Q

Sample[Σ,Q]

Input: a	database	D

Output: 0	or	1

Repair :=	∅
for i =	1	to n	do

choose P(t)∈ Bi with	probability	1/|Bi|

Repair :=	Repair ∪ {P(t)}

if Repair ⊨ Q	then

return 1

else

return 0

end

{B1,B2,…,Bn}	is	a	partition	of	D	such	that

each	Bi	collects	conflicting	(w.r.t.	Σ)	atoms	of	D

Effgicient Approximation	for	RF-BCQA[Σ,Q](CQ)
fix	a	set	of	primary	keys	Σ,	and	a	Boolean	CQ	Q

Approximation[Σ,Q]

Input: a	database	D,	and	numbers	ε	>	0	and	0	<	δ	<	1

Output: random	number	in	[0,1]

Experiments	:=	((2+ε)	.	mk)	/	ε2	.	ln(2/δ),	where	k	is	the	number	of

atoms	in	Q,	and	m	is	the	size	of	the	largest	Bi
Sum	:=	∅
Counter	:=	∅

repeat

Sum	:=	Sum	+	Sample[Σ,Q](D)

Counter	:=	Counter	+	1

until	Counter	=	Experiments

return Sum/Experiments

Effgicient Approximation	for	RF-BCQA[Σ,Q](CQ)
fix	a	set	of	primary	keys	Σ,	and	a	Boolean	CQ	Q

Theorem: Approximation[Σ,Q]	is	an	FPRAS	for	BCQA[Σ,Q](CQ)

Recap

• Inconsistent	databases	- do	not	conform	with	the	integrity	constraints	

coming	with	the	underlying	schema	(such	as	primary	keys)

• Consistent	query	answering	(CQA)	- find	meaningful	answers	to	queries	

when	databases	are	inconsistent

• CQA	is	a	hard	problem,	even	in	data	complexity	for	CQs	and	primary	keys

• Isolate	classes	of	queries	for	which	CQA	is	efficient	in	data	complexity

• Provide	data-efficient	approximations	schemes

